3.11.77 \(\int \cos ^{\frac {5}{2}}(c+d x) (A+C \sec ^2(c+d x)) \, dx\) [1077]

Optimal. Leaf size=50 \[ \frac {2 (3 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d} \]

[Out]

2/5*(3*A+5*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*A*co
s(d*x+c)^(3/2)*sin(d*x+c)/d

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 50, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {4151, 3093, 2719} \begin {gather*} \frac {2 (3 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(5/2)*(A + C*Sec[c + d*x]^2),x]

[Out]

(2*(3*A + 5*C)*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*A*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 3093

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos
[e + f*x]*((b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[(A*(m + 2) + C*(m + 1))/(m + 2), Int[(b*Sin[e +
f*x])^m, x], x] /; FreeQ[{b, e, f, A, C, m}, x] &&  !LtQ[m, -1]

Rule 4151

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(m_)*((A_.) + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[b^2, Int
[(b*Cos[e + f*x])^(m - 2)*(C + A*Cos[e + f*x]^2), x], x] /; FreeQ[{b, e, f, A, C, m}, x] &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int \cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx &=\int \sqrt {\cos (c+d x)} \left (C+A \cos ^2(c+d x)\right ) \, dx\\ &=\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {1}{5} (3 A+5 C) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {2 (3 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.13, size = 48, normalized size = 0.96 \begin {gather*} \frac {2 (3 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+A \sqrt {\cos (c+d x)} \sin (2 (c+d x))}{5 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(5/2)*(A + C*Sec[c + d*x]^2),x]

[Out]

(2*(3*A + 5*C)*EllipticE[(c + d*x)/2, 2] + A*Sqrt[Cos[c + d*x]]*Sin[2*(c + d*x)])/(5*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(251\) vs. \(2(70)=140\).
time = 0.09, size = 252, normalized size = 5.04

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-8 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) A -3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-5 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(252\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

-2/5*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+8*A
*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4-2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)*A-3*A*(sin(1/2*d*x+1/2*c)^2
)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-5*C*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x
+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.58, size = 87, normalized size = 1.74 \begin {gather*} \frac {2 \, A \cos \left (d x + c\right )^{\frac {3}{2}} \sin \left (d x + c\right ) + \sqrt {2} {\left (3 i \, A + 5 i \, C\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + \sqrt {2} {\left (-3 i \, A - 5 i \, C\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{5 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

1/5*(2*A*cos(d*x + c)^(3/2)*sin(d*x + c) + sqrt(2)*(3*I*A + 5*I*C)*weierstrassZeta(-4, 0, weierstrassPInverse(
-4, 0, cos(d*x + c) + I*sin(d*x + c))) + sqrt(2)*(-3*I*A - 5*I*C)*weierstrassZeta(-4, 0, weierstrassPInverse(-
4, 0, cos(d*x + c) - I*sin(d*x + c))))/d

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)*(A+C*sec(d*x+c)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

Mupad [B]
time = 4.72, size = 60, normalized size = 1.20 \begin {gather*} \frac {2\,C\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}-\frac {2\,A\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(5/2)*(A + C/cos(c + d*x)^2),x)

[Out]

(2*C*ellipticE(c/2 + (d*x)/2, 2))/d - (2*A*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c +
 d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2))

________________________________________________________________________________________